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Abstract

Steady heat conduction in the rectangle is treated with the method of Green’s functions. Single-sum series for the
Green’s functions are reported in terms of exponentials which have better numerical properties than hyperbolic
functions. Series expressions for temperature and heat flux caused by spatially uniform effects are presented. The
numerical convergence of these series is improved, in some cases by a factor of 1000, by replacing slowly converging
portions of the series with fully summed forms. This work is motivated by high-accuracy verification of finite-difference
and finite-element codes. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The method of Green’s functions (GF) applies to
linear differential equations that describe a wide variety
of physical phenomena, including heat conduction,
fluid flow, and electrochemical potential. In this meth-
od the boundary value problem for the temperature is
restated into an integral expression that involves the
known boundary conditions and the GF. If the GF is
known and if the integral expressions can be evaluated
then the method of GF is a powerful tool for solving
many different problems. This paper applies the method
of GF to evaluate steady-state temperature and heat
flux in the rectangle. One motivation for the work is
high-accuracy verification of finite-difference and finite-
element codes.

The pertinent literature is summarized next. Several
books give a good overview of the GF method such as
Morse and Feshbach [1], Carlsaw and Jaeger [2] and
Stakgold [3]. Barton [4] carefully discusses the properties
of the Dirac delta function and describes the pseudo GF
for the Neumann boundary condition. Two books by
Butkovskii [5,6] contain many GF organized according
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to the type of differential equation. The differential
equations are categorized according to a number system
for the number of spatial dimensions, the order of the
highest time derivative, and the order of the highest
spatial derivative. Although Butkovskii’s number system
clearly distinguishes different equations, there are no
subdivisions for the various coordinate systems and
boundary conditions. Beck et al. [7] give extensive tables
of GF for heat conduction and diffusion. The GF are
organized with a number system for the number of
spatial dimensions, the type of coordinate system, and
the type of boundary conditions. Most of the book is
devoted to transient heat conduction and few 2D steady
GF are given.

Dolgova and Melnikov [8] discuss the steady 2D heat
conduction in Cartesian and cylindrical coordinates.
Fourier series expansions along one coordinate direction
are used to produce single-sum series for the GF. Three
examples of GF for the rectangle are given. Most im-
portantly, the slowly converging portions of the series
for the GF are identified and replaced with closed-form
expressions. This approach has been extended and ex-
panded in two recent books by Melnikov [9,10] to im-
prove the numerical convergence of GF for a variety of
equations, coordinate systems, and geometries. The
chapters on Laplace and Helmholtz equations include
sections on the rectangle, and several GF are given.
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Although wide ranging, the improvement of conver-
gence is applied only to GF.

Marshall [11] discusses Laplace equation solutions
for a rectangle with Neumann boundary conditions
applied to electrochemical cells. Similar to Melnikov,
Marshall replaces the slowly converging portions of the
GF with closed-form expressions, some of which are
constructed from 1D GF. Numerical examples are given
for specified-flux boundaries that represent two small
electrodes embedded on opposite sides of the rectangle.

Previous work on steady heat conduction in the
rectangle by the first author [12] provides a complete list
of all single-sum GF with boundary conditions of type 1,
2, or 3. The GF are organized and identified by Beck’s
numbering system.

The contribution of the present paper is threefold.
First, GF for the rectangle are given in single-sum form
involving exponentials which are numerically better be-
haved than the hyperbolic functions previously pub-
lished. Second, integrals are carried out to produce series
expressions for temperature and heat flux caused by
spatially uniform boundary conditions and spatially
uniform volume energy generation. Third, the numerical
properties of the series expressions for temperature and
heat flux are improved by replacing slowly converging
portions of the series with fully summed forms. The
work encompasses 81 rectangular geometries containing
any combination of boundaries of types 1, 2, and 3.

2. Temperature problem

Consider the steady temperature in the rectangle
caused either by heating at the boundary or by internal
energy generation. The temperature satisfies

T T glxy)
2 02 k
or

k[a_ +nT = f; for boundaries i =1,2,3, or 4.
n;

O0<x<L, O<y<W,
(1)

Here n; is the outward normal on each face of the
rectangle. The boundary condition represents one of
three types at each surface: type 1 for k; =0, h; = 1, and
/i a specified temperature; type 2 for k; = k, h; = 0, and f;
a specified heat flux; and type 3 for k; = k and f; = h; T,
for convection to surroundings at temperature 7. Heat
transfer coefficient #; must be uniform on the ith
boundary.

The temperature can be stated in the form of inte-
grals with the method of Green’s functions. If Green’s
function G is known, then the temperature that satisfies
Eq. (1) is given by

L w /o)
g x?.y ! / ! !
T(x,y) =/ / gx>)) )G(x,ylx,y) dx' dy
xX'=0 Jy'=0 k

(for volume energy generation)

Ji
+Z/ LG(x,y | x}, ) ds
(for boundary conditions of types 2 and 3 ')

/f,any|x”yl) ds, 2)

(for boundary conditions of type 1 only).

The same Green’s function appears in each integral
but is evaluated at locations appropriate for each inte-
gral. Here position (x/,)!) is located on surface s; and »;
is the outward-facing unit normal on this surface. The
two summations represent all possible combinations of
boundary conditions, but with only one type of
boundary condition on each of four surfaces of the
rectangle. Mixed-type boundary conditions are not
treated.

3. Definition of the GF

The steady Green’s function represents the response
at point (x, y) caused by a point source of heat located at
(x',»). The GF associated with Eq. (1) is given by

*G G . /
@+672:75(x—x)5(yfy)

O0<x<L, O<y<W, (3)
oG ,
k[a—Jrh,-G:O for faces i =1,2,3,4.

n;

The homogeneous boundary conditions are of the same
type as the temperature problem, but the volume energy
generation is replaced by a Dirac delta function, 6. Most
of the quantities in this discussion have units: (x 7y) are
each (m); 6 = (m™'); k= (W/m/K); h=(W/m’/K);
and function G is dimensionless for steady heat con-
duction in the rectangle.

4. GF number

The specific GF and the specific geometry are iden-
tified by a “number” of the form XZJYKL in which X
and Y represent the coordinate axes, and the letters
following each axis name take on values 1, 2, or 3 to
represent the type of boundary conditions present at the
body faces normal to that axis. For example, number
X12 represents boundary conditions of type 1 at x =0
and type 2 at x=L. As another example, number

' A second form of this integral is discussed in Section 6.4
for type 3 boundaries.
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X11Y13 describes a GF for a rectangle with three faces
with type 1 boundaries (G = 0) and the face at y =W
has a type 3 boundary (convection). See [7, Chapter 2],
for additional details of the number system.

5. Single-summation form of the GF

The GF stated below contains a summation with

eigenfunction Y,, norm N}f/ 2 and kernel function P,, as
follows:

1 o~ L0NY0)
Glx,y|x,))==P(x,x) + L= 2P (x, X

The summation term is needed for every GF. The first
term with kernel function P, is needed only when Y22 is
part of the GF number (when zero is an eigenvalue).
This term is discussed in detail later.

In Eq. (4) the kernel functions P, are placed along the
x-axis. An alternate GF may be constructed by placing
the kernel functions along the y-axis. Both forms of the
GF are different series expansions of one unique solution
to Eq. (3).

5.1. Eigenfunctions

The y-direction eigenfunction satisfies the following
ordinary differential equation:

Ynﬂ(y)—ﬁ—yﬁ)’n(y) =0, (5)

where 7, is the associated eigenvalue. (Strictly speaking,
the eigenvalues are 2, which can be shown to be real and
non-negative. Without ambiguity we take the non-neg-
ative square root of y?> and shall refer to them as the
“associated eigenvalues” for brevity.) There are nine
different eigenfunctions associated with the nine possible
boundary condition combinations YKL (K,L = 1,2, or
3). Eigenfunctions Y,(y) are composed of sines and co-
sines, and are given in many texts. Table 1 contains the
eigenfunctions and norms and Table 2 contains the as-
sociated eigenconditions (and eigenvalues for simple
cases). For case Y22 the eigenvalue may also take on the
value zero which requires special care.

5.2. Kernel functions

The method for obtaining kernel functions P, will be
discussed next. To obtain functions P,, substitute the
series for G given by Eq. (4) into Eq. (3). Additionally
the y-portion of the Dirac delta function is replaced with
the following identity:

Sy —y) = i —Y"%EZ’)(” | (6)

Table 1

Eigenfunctions and inverse norm*

Case Y,(y) N
Y11 sin(y,y) 2/W
Y12  sin(y,y) 2/W
Y13 sin(y,y) 24,/ W
Y21 cos(y,y) 2/w

2/w  for vy, #0

in

cos(y,y), 7 #0
Y22 1/w for y,=0

1, 7, =0

Y23 cos(y,y) 2¢,,/W
Y31 sin(y, (W — ) 2¢,/W
Y32  cos(y, (W —y)) 201,/ W

Y33 y,Wcos(y,y) + (mW/k)sin(y,y) 20,/W

Note: ¢, = [(yn W)2 + (h,-W/k)z]
=[0uW) + (bW [k) + bW [K]
B, = o, + [(1,W) + (W k) + (MW [k) s,

*Index n = 1,2,... for all cases except Y22 with n =0,1,2,...

Table 2
Eigencondition and eigenvalues for Y,(y)*
Case Eigencondition Eigenvalues
Y11 sin(y, W) =0 oon=12,...
Y12 cos(y, W) =0 @l p=1,2,...
Y13 v W cot(y, W) = —hW [k
Y21 cos(y, W) =0 @l =1,2,...
Y22 sin(y, W) =0 Zon=0,12,...
Y23 v, W tan(y, W) = haW /k
Y31 v Weot(y, W) =—-mW/k
Y32 v, W tan(y, W) = W /k
Y33 tan(, ) = [, (b + o) /K]

[y2 = ok’

*Index n=1,2,... for all cases except Y22 with n=0,1,2,...

It is very important to include the n =0 term of the
summation only for case Y22. Then Eq. (3) can be
written as

This equation is satisfied if the term in brackets is zero
for all values of n. That is, function P, satisfies the fol-
lowing differential equation:

d’p,

S R = —3x =), ™

Here function P, has units of meters and parameter 7y,
has units of m~!. The solution for P, may be found using
two solutions of the homogeneous equation that satisfy
the boundary conditions and are joined appropriately at
x =x' (see for example [3, Chapter 1]).

A convenient form of the kernel function may be
found with the aid of the reciprocity condition satisfied
by all Green’s functions: B, (x,x’) = P,(x',x). From this
relation if one of the piecewise-smooth segments of the
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kernel function is known, the other may be constructed
by interchanging the arguments. Using this approach
the kernel function may be stated in the form

Pyx,x) = {u(x |x) x>, (8)

ulx |x) x<x.

Functions u(x | x') are listed in Table 3 in the form of
exponential functions. Note that all of the arguments of
the exponential terms have values which are negative.
This form of the kernel function is important for
avoiding numerical “overflow” which can occur if the
kernel function is expressed with hyperbolic functions.
Refer to Appendix A for further discussion of this
point.

5.3. Kernel functions for vy, =0

There are nine geometries for which a zero eigen-
value must be included, cases XIJY22 for 7,J = 1,2, 3.
In these cases the kernel function P, for cases XIJ
(not including X22Y?22 which is treated later) is found

from
d’P, )
ﬁ:—é(x—x). (9)

Table 3
Dimensionless functions u(x|x’) to construct P,(x,x’) for
7 7# O
Case u(x|x') for x > x'. (Use u(x' | x) forx < x'.)
Units: length

X1 (e77 =) — e b)) (1 — o) + 2y(e™2F — 1)]
X12 (e el >) (1- e’z"“/) + (e + 1)
X13  [pL(e7@=) —
+By(—e~
*[ZV(VL(I + e’“) +By(1—e))
X21 ( TR (14 e72) +
X22 e 7(2L—x=) N1+ e’z'fx/) S
X3 (1 +e*“)[ 7L+ Bo)e ) 4 (3L — By)e”
+[29(YL + By + (By — yL)e™")]
X31 (e ) — e 1) [(pL — By)e ™ +yL + B, |
+[2p()L +B1 + (7L — By)e )]
X32 (e ) e 1LY [(pL — By)e ¥ +yL + B, |
+[2y(yL + By + (B — yL)e %))
X33 {e 7@ (2L2 4 yLBy — yLBy — BiBy)
+e70=) (2L + LB, + 7LB, + B\ B,)
+e 70 (2 L2 — 9By + LB, — B1B,)
+e 7@t (3212 — LBy — JLBy + B\ B,) }
+{29[y*L* + yLB, + yLB; + BB,
—(y*L? — yLBy — yLB> + B By )e 2]}
* Note: By = hiL/k, B, = hL/k.

—7(2L+x"—x) te (x—x') _ e—::(x+x’))

y(2L—x' —x) te y(2L+x' —x) +e? (r—x') _ e—",'(x+x’))}

29(e™#" + 1)]
27(1 = e%)]

(2L xx)}

—

Table 4

Function u(x | x') for case y = 0*

Case u(x | x') for x > x'. (Use u(x’ | x) forx <x'.)
Units: length

X11 X' (1 —x/L)

X12 X

X13 X'[1 = By(x/L)/(1 + By)]

X21 L—x

X220 (2 4+ (¥)")/(2L) —x +L/3

X23 L(14+1/B, —x/L)

X31 (Bix' = BixXx/L+L—x)/(1+By)

X32 L(1/By+X'/L)

X33 (Blex’+le’ 7BlB2x’x/L7B2x+B2L JrL)

%(3132 + B +Bz)

2 Note: B1 = h]L/k7 Bg = th/k
®Special temperature solution needed with this pseudo GF.

As with P,, the kernel functions P, for y, = 0 are found
by satisfying the homogeneous boundary conditions at
x = 0 and x = L denoted as XIJ. These kernel functions
are listed in Table 4 in the form of polynomials. They are
identical to the steady 1D GF in Cartesian coordinates
(see [7, Appendix X, p. 478)).

5.4. Special case X22Y22

For the case in which all four boundaries of the
rectangle are of type 2 (Neumann), the usual GF does
not exist and the usual GF solution cannot be used to
find the temperature. In this section a pseudo GF is
discussed that can be used instead.

In the X22Y22 case the input data to the tempera-
ture problem must satisfy a constraint — the sum of the
heat passing through the boundaries of the body must
be equal to the (negative of the) integral of the heat
introduced by volume energy generation. This is
equivalent to an energy balance over the volume of the
rectangle. If the volume energy generation is zero then
the boundary heat fluxes must sum to zero. In addition,
the solution for the temperature contains an arbitrary
additive constant that must be supplied as the input
data.

The pseudo GF, given the name Gps, satisfies the
following differential equation:

aszs aszs f 1
a2 T o —olx =x)o(y =) + - (10)

The pseudo GF will be sought in the form given earlier,
Eq. (4). Substitute Eq. (4) into Eq. (10) along with the
Dirac delta function from Eq. (6) and collect similar
terms. Kernel functions P, (x,x’) for n # 0 satisfy Eq. (7)
and are given in Table 3. However, function Py(x,x’)
satisfies the following relation
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d’p, L1
W——é(x—x)-ﬁ-z

A solution for P, is given by

[xz n (x')z}/(zL) — ¥ +L/3 for x<¥,

e [x2+(x’)2]/(2L)—x+L/3 for x' <x.

The above function is not unique since a different ad-
ditive constant could be included; the given constant
causes the integral of Py over (0,L) to be zero.

To find the temperature with the pseudo GF the
following integral equation must be used:

4
T(x,y):Z/S%Gps(xnyXLyf) ds;
i=1 i

+ / /%GPS(XJ/ [ X)) dx' &Y' + (Txoov)-
(11)

The sum is over four faces of the rectangle and (Tx2y2)
is the spatial average temperature in the rectangle.

6. Temperature from spatially uniform effects

The temperature caused by spatially uniform effects
is discussed in this section. Exact temperature solutions
are of interest for the purpose of high-accuracy veri-
fication of finite-element and finite-difference computer
codes. Since the problem is linear, a rectangle heated
on multiple sides and containing energy generation
may be treated as the sum of several problems, each
with only one non-homogeneous term. Thus, the
temperature caused either by spatially uniform energy
generation or spatially uniform boundary effects will
be considered one at a time. In the following discus-
sion the non-homogeneous boundary will be consid-
ered only at x=0 or at y=0 without loss of
generality because the coordinate system may be ro-
tated or reversed to represent heating on other sur-
faces.

6.1. Volume energy generation

The temperature caused by volume energy genera-
tion is given by the first integral term of Eq. (2). For
spatially uniform volume energy generation g, the in-
tegrals on x’ and )’ may be carried out independently,
tabulated, and used to assemble the temperature series
expression for any combination of boundary condition
types. The required integrals on Y,()/) are listed in
Table 5 and the integrals of P,(x,x’) are listed in Table

Table 5

Integral of eigenfunction, f o L0 &y

Case  %,() Integral of Y, (') over

o<y <w

Y11 sin(y,y) W[l — (=1)"]/(nm)

Y12 sin(y,y) 2W +[(2n — 1)n]

Y13 sin(y,») (L = cos(y, )]/,

Y21 cos(y,y) 2W (1" /[(2n — 1)n)
cos(y,y), 7, #0 0 fory,#0

Y22 1, P, = W for y,=0

Y23 cos(y,y) [sin(y, W)]/7,

Y31 sin(y,(W —»)) [1 = cos(y,)]/7,

Y32 cos(y,(W —y)) [sin(y, W)]/7,

Y33y, W cos(y,y)
(W /) sin(3,)
* Note: B] = hl W/k

sin(y, W) + Bi[1 — cos(y,W)]/7,

Table 6
Integral of kernel function, / P, (x,x") dx’ for y £ 0

Case Integral of P, (x,x’ ) over 0 <x <L, y # 0. Units: length?
X11 1 L+ L ( Y(2L—x) _ a—x _ e—;-(L—x) + e—y(L+x)) = (1 _ e—ZyL)
iz(e 1OL=) 4 @) + (1 4 e )

X13 % + %[BZ (e—,(ZL—x) + e—*,'(Ler) _ e—',‘(L—x) _ e—*,'x)

X12

—L(e ™ +e )] = L+ By + (L — By)e ]
X21 %7%( W) g L+x)+(1+efz~,¢)
X22 %
X23 L LBy (e 4 eii)
<L+ B + (B — pL)e 2]
X3l G+ }%[B] (e —e1t=9)
7«/L(e*:f'(Lﬂ') + e—y(ux))}

X32 Lz — lzBl( Y4 e” (2L—x )— [",’L-’-B] + (Bl — yL)e’z"'L]

X 4 e 2L+x))

+[yL+ By + (7L — By)e %]

X33 L+ %[(3132 - }’LBz)e"f'(”X — (yLBy + BBy )e "t~
—(yLB) + B1By)e ™ + (BB, — yLB; )e 7]
—[(”})LBI —+ “/'LBZ — "/ZLZ — B]Bz)eiz"i

+(yLBy + yLBy + y*L* + B\ B,)]

6 for n# 0 and in Table 7 for n = 0. Using these in-
tegrals the temperature caused by uniform volume
generation g, may be written as

L 0
&0 Yn
ren) =4 [ a8 3 B0

= n= /

= |

w L

< [ nonay / Bex)dd.  (12)
V=0 x'=0

Recall that the term containing Py is needed only with

the Y22 cases. The above expression represents 80 dif-

ferent cases; case X22Y22 requires Eq. (11).
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Table 7
Integral of kernel function with y =0, fo/:o Py(x,x") dx’

Case Integral of kernel function P(x,x’). Units: length?

X1 L2i(x/L) = 5(x/L)"]

X12  L*[v/L—Y(x/L)"]

X13 WL+ B, —x/L— Bx/Ll/(1 +B,)

X21 A1 — (x/L)}]

X220 0

X23 2B, — B,(x/L)* +2]/B,

X31  AL?[Bix/L—Bi(x/L)’ +1

X32  L’[x/L—Mx/L) +1/B)]

X33 U2[BBy(x/L — (x/L)’) +2Bix/L

—(B, +B))(x/L)* + B, + 2]

~+[B1B> + By + B3]

— (/L))/(1 +By)

#Pseudo GF for the X22Y22 case includes an additive constant.

6.2. Uniform boundaries of type 2 or 3

The temperature caused by uniform boundaries of
type 2 (heat flux) or type 3 (convection) is given by the
second integral term in Eq. (2). For a type 2 boundary,
quantity f; is a uniform heat flux (W/m?). For a type 3
boundary quantity f; is usually 47, where /s is a heat
transfer coefficient and 7, is the fluid temperature. The
other three boundaries are homogeneous and may be
of any type in any combination. If the uniformly he-
ated surface is at x’ = 0 then the temperature is given
by

i 1
T(xvy):f%P x’ 0+/;Z N(y

n=1 y

‘ { / W n0) dy’} P (13)

The integral falls on the eigenfunction Y,()/), and the
integrals given in Table 5 may be used to construct a
series expression for the temperature.

If the heated surface is at )/ = 0 then the temperature
is given by

T(x,y) =
X {/; ,l(xx)dx’:| 20"y —o- (14)

Here the integral falls on the kernel function P, and the
series expression for this temperature may be assembled
using functions given in Tables 6 and 7.

An alternative temperature expression may also be
constructed from the alternative GF for each of the
above cases.

6.3. Uniform temperature boundary (type 1)

The temperature everywhere in the rectangle caused
by a boundary uniformly held at temperature 7y > 0 is
given by the third integral term in Eq. (2). The recom-
mended form of the temperature is constructed from
the GF that has kernel functions parallel to the non-
homogeneous boundary.

When the uniform-temperature surface is located at
y' = 0 then the temperature is given by

V=0

or | s 0
- (15)

N, dy
Here the derivative —d/dn} has been replaced by +d/dy
at y/ = 0. For this expression the integral falls on the
kernel function, previously discussed and listed in Table
6. Term P, is not present since Y22 is not an option here.
The derivative falls on the eigenfunction; expressions for
dY,(y)/dy are given in Table 8.

The alternate form of the temperature is occasionally
needed. The alternate form of the GF is constructed by
placing the eigenfunctions parallel to the non-zero-tem-
perature boundary (in Eq. (4), interchange x and y and
interchange L and W). The alternate temperature for the
uniform-temperature surface located at )/ = 0 is given by

dpPy(y, <. X,
T(x,y) =T 45 Y) + Ty Z —]\EX)
=0 n=1 X
X gy 802 n(y7y) 7 (16)
x'= V=0

where X, is the eigenfunction parallel to the x-axis (Table
1). The derivative —d/dn} has been replaced by +d/dy
aty = 0.

6.4. Type 3 boundary: second form

The integral expression for the temperature caused
by type 3 boundary heating has a second form, devel-
oped in this section, which is similar to the type 1 in-
tegral expression. On a type 3 boundary, G = —(k;/h;)
0G/0n (for h; not zero). Also, on a non-homogeneous
type 3 boundary, function f; may be written as
f; = h;T, for convection heat transfer to a fluid at 7.
Replace the above relations for G and f; into the type 3
integral from Eq. (2) to obtain, for boundary condi-
tions of type 3

—/‘Too (Xy\x,,y,)d,

T(x,y) = o
J

Jsj
This form shows how the temperature caused by a type 3
boundary reduces to the type 1 case when & becomes
large. These two representations seem to yield the same
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Table 8
Derivative of ¥,()’) with respect to )’
Case dy,/d(y) dy,/d(y) aty =0 dy,/d(y) aty =w
Y11 y cos(y,)/) n/W (=1)'nr/W
Y12 7, €08(7,)) 2n—1)m/(2W) 0
Y13 7 €O8(7,)) Ta 7 €O8(7, )
Y21 =7 Si(3,)) 0 (=",
Y22 i Sin(Yny/)7 Tn 5/: 0 0 for Tn % 0 0 for Tn 7£ 0

0, 7, =0 0 fory,=0 0 fory,=0
Y23 —y, sin(y,)) 0 —y, sin(y, W)
Y31 7 €0s[y, (W = /)] —7n €08(7, ) 7
Y32 Yusinfy, (W — ') Va Sin(p, W) 0
Y33 —2Wsin(y,y) +h'W,,, cos(y,)/) V. (MW [k) —y2W sin(y, W) +}%yn cos(y, W)

infinite series expression for temperature in the few cases
that we have investigated. We hope that more definitive
conclusions will be reported in the near future.

7. Improved convergence: fully summed series

The convergence speed of a series expression can be
greatly enhanced if the series contains the integral of the
kernel function, as follows. The series are written in two
parts, and the slowly converging part is identified as a
1D steady expression which can be replaced with a fully
summed expression. To see this, write the integral of the
kernel functions given in Table 6 in the following form:

L
1
/ PxX) &Y = S Vi)
x'=0 n

Here 7, is that part of the integral that contains expo-
nentlal terms that decay rapidly as » increases. Replace
the expression 1/y> + V,(x,7,) into the series in place
of the above integral wherever it appears. For example,
for the temperature caused by specified temperature 7,
at y = 0 (Eq. (15))

dv.(/) .
=T (%, 7,)
0 Z N, y, Lt ;
Y,(v) dY, ()
NV dyl y’:O.

The first series which include the term 1/y? is identical to
the series representation of the 1D temperature distri-
bution that satisfies the appropriate boundary conditions
at y=0 and y = W; refer to Appendix B. This slowly
converging series can be replaced by a fully summed form
for the 1D, linear-in-y temperature, that is,

»(v) dY, ()

T(x,y) = i

oC
Tip(y) +TOZ x,7,)

- Ny

y'=0

n

(17)

where Tip(y) is the fully summed steady 1D tempera-
ture. The second series in the above expression generally

Table 9

(a) 1D temperature from heating at a type 1 boundary at y = 0.
The other boundary is homogeneous. (b) 1D temperature from
heating at a boundary of type 2 (f = g) or type 3 (f = Tw)
located at y = 0. The boundary at y = ¥ is homogeneous

Case Heated at: Tin(y)/ Ty

Y11 y=0 1—y/w

Y12 y=0 1

Y13 y=0 1 —[By/(1+By)|y/ W
Tin(v)/ (/W /k)

Y21 y=0 1—y/w

Y22 y=0 /wy —y/w+1/3

Y23 y=0 1+1/B, —y/W

Y31 y=0 (I=y/W)/(1+By)

Y32 y=0 1/B,

Y33 y:O (] —Bzy/W+Bz)/(B] +Bz+B]Bz)

#Constructed from the pseudo Green’s function.

converge rapidly and uniformly. Although demon-
strated above for heating caused by a type 1 boundary,
this technique applies to any temperature expression in
which the term [ P, (x,x’) dx’ appears, including bound-
ary heating of types 2 and 3. Functions Tip(y) for
boundary-heating cases are listed in Table 9. For tem-
perature caused by uniform internal energy generation,
the appropriate fully summed 1D expressions may be
taken from Table 7 in the form Tip(y)/(goW?/k) by re-
placing variable x/L by y/W (recall that functions P, are
the 1D GF). For uniform internal energy generation
case X22Y22 is trivial, since the integrals of ¥, and P, are
both zero.

8. Heat flux

The heat flux is found from the temperature with
Fourier’s law. There are two heat flux components in the
rectangle,

aT
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Since taking a derivative of a series degrades the con-
vergence rate, it is important to begin with the best-
converging form of the temperature when finding the
heat flux. Generally the series for the heat flux are well
behaved inside the rectangle, but special care is needed
to evaluate the heat flux near the boundaries.

8.1. Type 3 boundary

Heat flux perpendicular to type 3 boundaries should
always be evaluated by Newton’s law of cooling

q= h(T|b0undary - Tw)

rather than from Fourier’s law. The series for boundary
temperature in the above expression converge more
rapidly than the series for the heat flux computed from
the derivative of the temperature.

8.2. Type 2 boundary

At a type 2 boundary, never use a series expression
to evaluate the flux perpendicular to the boundary, use
the known boundary condition instead. The series ex-
pression may give an erroneous value, since eigen-
function Y,(y) is designed to give zero flux on the
boundary.

8.3. Type 1 boundary

The heat flux caused by heating at a type 1 boundary
can be troublesome for two reasons. First, the heat flux
can be singular near corners between type 1 boundaries
if a jump in boundary temperature occurs. Second, even
though away from the corners the heat flux is finite, the
series for heat flux can converge slowly, and even di-
verge, when the series are evaluated on the boundaries.
A general rule for evaluating heat flux at type 1
boundaries is to use the GF with the kernel functions
parallel to that boundary.

To calculate the heat flux at a non-homogeneous type
1 boundary (where T # 0), it is imperative to use the
temperature given by Eq. (17). Then the heat flux per-
pendicular to the heated boundary is given by

dTlD > 1
Bxy) == k=g — KTy Y Valx,7,) N,

n=1

dy,(y) d¥,(y)
dy dy

The heat flux in the x-direction based on Eq. (17) is given
by

(18)

V=0

(19)

8.4. Alternate form

In a body heated by a boundary of type 1, the al-
ternate form of the heat flux is needed at or near a side
boundary where 7 = 0. Near such a side boundary the
convergence of the series for ¢, given by Eq. (18) is no
longer controlled by rapidly decaying exponential terms
and the series may diverge. The alternative form of the
heat flux is given by

> 1 dY,(y) ,dP,
__kTOZN Ay Sy 5,0/ dy dx'

x'=0

This expression should be used near homogeneous type
1 boundaries y = 0 or y = W. Away from the boundaries
either heat flux relation may be used. To repeat: for heat
flux near a type 1 boundary, use kernel functions that
are parallel to that boundary.

9. Numerical examples
9.1. Temperature, case X21Y21

Consider the rectangle with heat flux ¢go on boundary
y =0, temperature zero at y = W, zero heat flux at
x =0, and temperature zero at x = L. This is case
X21Y21. In this example the temperature found from
three different series expressions, labeled 4, B, and C,
will be compared. Using the GF with kernel functions
along the x-axis, series 4 is found from Eq. (14)

lIo Vxa1 (X, Vs L)
T( _2 Z Cos /ny |:W2'”2+ Wz )

where y, = (n— 1/2)n/W and Vo (x,y,,L) is given in
Table 6. Replacing the term 1/y2 with the linear-in-y
1D temperature gives the best-converging form, series
B

Mp
qoW y Vxa1(x,9,,L
Ti(x.7) —°7{1 S 2423 cosipy) B I D L
n=1

Series C are found using the alternate GF with kernel
functions along the y-axis

qo - 1)"+l Py =0,y)
Te(x,y) = 24—
E cos(f,x) 7 ,

where f,L=(n—1/2)n and P, is given in Table 3
(with x — y, X =)/, L— W, and y — f). The con-
vergence of these series is compared in Table 10 for
the case L/W =1. The dimensionless temperature
values are listed once and the number of terms to
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Table 10

Temperature value and number of terms needed for three different series for the temperature in a rectangle, L/W = 1, with specified

heat flux gy at y = 0. Case X21B00Y21B10

X/L y/W T/(qnW/k) MA MB MC
0.01 0.01 0.665314 3550 10 235
0.02 0.01 0.665189 3550 10 225
0.04 0.01 0.664688 3550 10 215
0.08 0.01 0.662680 3550 10 235
0.16 0.01 0.654595 3550 15 245
0.32 0.01 0.621332 3550 15 240
0.64 0.01 0.470723 4150 20 255
0.01 0.08 0.597939 7870 10 45
0.02 0.08 0.597815 7870 10 50
0.04 0.08 0.597320 7870 10 50
0.08 0.08 0.595334 7885 10 50
0.16 0.08 0.587338 7935 10 50
0.32 0.08 0.554460 8170 15 50
0.64 0.08 0.406275 9545 20 50
0.01 0.64 0.188483 17685 10 15
0.02 0.64 0.188424 17685 10 15
0.04 0.64 0.188189 17695 10 15
0.08 0.64 0.187248 17635 10 15
0.16 0.64 0.183478 17920 10 15
0.32 0.64 0.168323 18710 15 15
0.64 0.64 0.107468 23410 20 15

obtain this temperature is listed for each series. Note
that series B are uniformly convergent at various lo-
cations in the rectangle, needing no more than 20
terms. At some locations series 4 require 1000 times
more terms than series B. Alternate temperature series
C require fewer terms than A4 but more terms than
series B.

9.2. Heat flux, case X11Y11
Consider the rectangle with zero temperature on
three faces and the y = 0 face at elevated temperature Tj.

The normalized heat flux components constructed from
Egs. (18) and (19) are given by

4:(x.) —22 sin(y,»)

KT,/ W
| femn 0 — e et — gt
@ 1) /
(20)
9(x)) =1 +22 cos(7,)
KT,/ W - "
y [e—,,,(2L—x) — e ML) Leh e—'y,,(L-%—x)}
@5 1) |
(21)

where y, = n/W. These heat flux series converge ev-
erywhere inside the rectangle. The convergence is con-

trolled by the rate at which the exponential terms vanish
as y, increases; the series diverge at x =0 and x =1L
where one or more exponential terms become unity. At
these boundaries the alternative series for the heat flux
are needed, constructed from the alternative GF

4:(x,)
=2 ML= (-1
vl me (171
[e—lfn @w-y) _ e—/f,,y}
X —(1 T (22)
4 (x,»)
KTo/L |, —1+22s1n V)

[e*ﬁn(ZW*y) +e ]
X Ta—ewn (23)

where 8, = nm/L. The alternative heat flux expressions
are complementary, converging where the previous heat
flux expressions do not. In Table 11 the heat fluxes ¢,
and ¢, are given at several locations in the rectangle
along with the number of series terms required for the
heat flux expressions to converge to the values shown. In
this example the heat fluxes at the corners (0,0) and
(L,0) are singular (there is a jump in temperature).
Calculations were carried out in double precision
Fortran 77 on a DEC Alpha computer. Convergence
was determined by computing the ratio of the sum of the
(absolute values of) the last five terms of the series to the
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Table 11

Heat flux and number of terms needed for evaluating series expressions in the rectangle with type 1 boundaries, L/W =1, case
X11B00Y11B10

x/L v q4:L/ (kTy) M (Eq. (20)) M (Eq. (22)) q,W/(kTy) M (Eq. (21)) M (Eq. (23))
0.2 0 0.000000 1 a 3.411401 35 a
0.4 0 0.000000 1 a 2.117159 20 a
0.6 0 0.000000 1 a 2.117159 20 a
0.8 0 0.000000 1 a 3.411401 35 a
0 0.1 —6.257891 a 65 0.000000 a 5
0.2 0.1 —1.150880 35 70 2.767053 35 65
0.4 0.1 —0.194620 25 75 1.998812 20 70
0.6 0.1 0.194620 25 75 1.998812 20 70
0.8 0.1 1.150880 35 70 2.767053 35 65
1.0 0.1 6.257891 a 65 0.000000 a 75
0 0.2 —2.972884 a 35 0.000000 a 5
0.2 0.2 —1.356423 35 40 1.790822 40 35
0.4 0.2 —0.302929 25 40 1.708419 20 35
0.6 0.2 0.302929 25 40 1.708419 20 35
0.8 0.2 1.356423 35 40 1.790822 40 35
1.0 0.2 2.972884 2 35 0.000000 a 40
0 0.4 —1.214617 a 20 0.000000 a 5
0.2 0.4 —0.865356 40 20 0.772967 40 20
0.4 0.4 —0.276722 25 20 1.055861 25 20
0.6 0.4 0.276722 25 20 1.055861 25 20
0.8 0.4 0.865356 40 20 0.772967 40 20
1.0 0.4 1.214617 a 20 0.000000 a 25
0.2 1.0 0.000000 45 1 0.204198 40 15
0.4 1.0 0.000000 25 1 0.329027 20 10
0.6 1.0 0.000000 25 1 0.329027 20 10
#Series does not converge at this boundary.

current sum. The series were truncated when this ratio Acknowledgements

was smaller than 1078,

10. Summary

In this paper series expressions have been given for
steady 2D heat conduction in the rectangle. Single-sum
GF provide two forms of the temperature expressions for
each geometry depending on the coordinate direction of
the kernel functions. Although the two forms are math-
ematically equivalent, they have complementary nu-
merical convergence properties. The general rule is that
the kernel functions should be placed parallel to a non-
homogeneous boundary, and then the slowest-converg-
ing portions of the series can be fully summed into
polynomial expressions. In many cases there is a 1000-
fold decrease in the number of series terms needed for
evaluation of the temperature. The improved series for
the temperature may be differentiated to find convergent
expressions for the heat flux, even at specified-tempera-
ture boundaries for which the heat flux is notoriously
difficult to evaluate. These methods are general in nature
and apply to 3D bodies and to bodies in other coordinate
systems if the GF may be expressed as Fourier series
expansions along one coordinate direction.
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Appendix A. Exponential versus hyperbolic kernel func-
tion

This appendix addresses numerical evaluation of the
kernel function. The X11Y11 case will be used as an
example with the kernel functions in the y-direction.

Two forms of the kernel function will be discussed,
the exponential form and the previously published
hyperbolic-trigonometric form. The exponential form
of the Y11 kernel function is given in Table 3 (for

y <))

(ef"/,,(ZW*,V*,V’) — e*}'n(y/av))(l —e )
Pn (y7 yl) = 1 :

2,7 1)

The hyperbolic-trigonometric form of this function is
given by [12]
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_ sinh(y,y) sinh(3, (W =)

Pﬂ 9 ! -
) Sinh(y, )

That these two functions are mathematically equal can
be shown with identity sinh(z) = (e — e*)/2: however,
they have different behaviors when evaluated on a
computer.

The hyperbolic—trigonometric form is difficult to
evaluate numerically for large n. Although the value of
function P, decreases towards zero as y, increases, the
value of P, is determined by a ratio of large numbers.
When evaluated on a computer for large values of y,, the
hyperbolic sine can produce a ‘“‘numerical overflow”
error, indicating a floating-point number whose positive
exponent is too large for machine representation.

As a specific example, for case X11Y11 the eigen-
values are given by y, = nn/L. For the particular values
y=02,y =0.5 W =1, and L = 3, when evaluated in
single precision Fortran 77 on a DEC Alpha computer,
the hyperbolic form of the kernel function can be eval-
uated only up to n = 85. For n > 85 numerical overflow
occurs and no value is computed. For double precision
(with more bits assigned to exponents) the kernel func-
tion may be evaluated up to » = 678 under the con-
ditions noted above. Since sometimes hundreds or
thousands of series terms are needed for evaluating
temperature from Green’s functions (see Table 10), the
hyperbolic-trigonometric form of the kernel function is
not adequate for numerical computation.

In contrast, the exponential form of P,(y,)’) may be
evaluated numerically for any value of n. First, the de-
nominator is never zero. Second, since every exponential
term in the expression has a negative argument, each
exponential term is bounded and tends towards zero for
large n. When the computer evaluates an exponential
term whose argument is large and negative, rather than
produce an “underflow” error, the computer returns a
zero value. The exponential form of the kernel function
is recommended for the numerical evaluation.

Appendix B. Series form of 1D GF

In this appendix the series form of the 1D Cartesian
GF is discussed. Temperatures constructed from these
GF appear as part of 2D temperature expressions and
may be exchanged for numerically better-behaved
polynomial forms.

The 1D GF satisfy
d&*G
——=-0-)) (B.1)
dy?
with boundary conditions

dG
dn,'

k,' *|‘h,G:07 i=1or2.

The 1D GF in series form are given by

o0 /
Guy) =3 2 BOLY) (B.2)
n=1 /" M
where eigenfunctions Y, (y) satisfy Eq. (5) as before. The
above expressions apply to cases YIJ for I,J =1,2,3,
except for case Y22 which is treated later. Next tem-
perature expressions from these 1D GF will be given.

B.1. Volume energy generation

The 1D steady temperature caused by uniform vol-
ume energy generation g, is given by

8o = 1 Yn(y) /W / /
8y C BTy oy dy. (B3)
k =1 yi Ny V=0

g "
o) =% [ G ay
)/./

B.2. Heating at boundaries of type 2 or 3

The 1D steady temperature caused by a non-homo-
geneous boundary of type 2 or 3 at y = 0 is given by

Tio() =260,y =0)

i~ 1 LO)%0/ =0)
== - 7 (B.4)
k ; a Ny
Here f; may be the specified heat flux (type 2 boundary)
or the product of the heat transfer coefficient and fluid
temperature 47, (type 3 boundary). Heating at surface
y = W may be written in a similar fashion.

B.3. Heating at a boundary of type 1

The 1D steady temperature caused by a temperature
Ty at y = 0 (type 1 boundary) is given by
dG(y,y)

Tin(y) = TOT

(B.5)

B.4. Polynomial forms

Fully summed polynomial expressions for the above
1D temperature series may be found by using the
polynomial form of the 1D GF in place of function
G(»,) in the above expressions. The polynomial form
of G(y,)') may be found from the kernel functions P,
given in Table 4 by making the following change of
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coordinates: x — y; x’ — )/; and L — W. Several tem-
perature expressions in polynomial form are given in
Table 9.

B.5. Special case Y22
For the Y22 case (Neumann boundary conditions)

Eq. (B.1) cannot be satisfied. However a pseudo Green’s
function, denoted Gps, can be used that satisfies

d*Gps o1
a2 == =Y)+4 (B.6)

with boundary conditions

dGps
d}’l,‘ -

0, i=1or2.

The pseudo GF may be stated in series form given by
Eq. (B.2) with appropriate values for Y,(y), 7,, and N,
from Tables 1 and 2.

For finding temperature in the 1D Y22 case, the
pseudo GF must be applied in a 1D analog to Eq. (11) in
which the heating terms satisfy an energy balance and
the average temperature appears as an additive constant.
Strictly speaking, for case Y22 Eq. (B.4) is not a tem-
perature, since the boundary heat flux represented by f;
is not balanced by another term. However, for the
purpose of improving the series convergence for the
rectangle, when Eq. (B.4) occurs containing the pseudo
GF for case Y22, then the polynomial form given in
Table 9(b) may be substituted.
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